
f-CNNx: A Toolflow for Mapping Multi-CNN
Applications on FPGAs

Stylianos I. Venieris
Department of Electrical and Electronic Engineering

Imperial College London
Email: stylianos.venieris10@imperial.ac.uk

Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering

Imperial College London
Email: christos-savvas.bouganis@imperial.ac.uk

Abstract—The predictive power of Convolutional Neural Net-
works (CNNs) has been an integral factor for emerging latency-
sensitive applications, such as autonomous drones and vehicles.
Such systems employ multiple CNNs, each one trained for a
particular task. The efficient mapping of multiple CNNs on a
single FPGA device is a challenging task as the allocation of
compute resources and external memory bandwidth needs to
be optimised at design time. This paper proposes f-CNNx, an
automated toolflow for the optimised mapping of multiple CNNs
on FPGAs, comprising a novel multi-CNN hardware architecture
together with an automated design space exploration method that
considers the user-specified performance requirements for each
model to allocate compute resources and generate a synthesisable
accelerator. Moreover, f-CNNx employs a novel scheduling algo-
rithm that alleviates the limitations of the memory bandwidth
contention between CNNs and sustains the high utilisation of
the architecture. Experimental evaluation shows that f-CNNx’s
designs outperform contention-unaware FPGA mappings by up
to 50% and deliver up to 6.8x higher performance-per-Watt over
highly optimised GPU designs for multi-CNN systems.

I. INTRODUCTION

Over the last decade, Convolutional Neural Network
(CNN) models have substantially improved the state-of-the-art
performance in several Artificial Intelligence (AI) tasks. This
property has made CNNs an enabling technology for novel
systems in both embedded and cloud applications. On the one
side of the spectrum, autonomous robots and vehicles is an
emerging field that has gathered wide interest from both the
academic [1] and industrial [2] communities due to its potential
societal and economic effects. On the other end, data centre-
based analytics that employ CNNs are becoming a widespread
operational model to serve a large pool of clients.

Both embedded and cloud AI systems rely their oper-
ation on multiple CNNs. In latency-critical, vision-centric
autonomous systems, perception is largely based on highly
accurate and reliable computer vision tasks, such as object
detection [3] and semantic segmentation [4]. Similarly, cloud-
based systems have to cope with servicing a wide range of
concurrent CNN applications, from bioinformatics to visual
search [5], with stringent response-time demands. In such
scenarios, a dedicated model is trained for each particular
task, leading to the parallel execution of several CNNs on the
same target platform. Moreover, the latency-sensitive nature of
modern applications prohibits the use of batch processing. As a
result, in both emerging embedded and cloud applications there
is a requirement for the latency-driven mapping of multiple
CNNs on the computing platform of the target system.

Currently, the conventional computing infrastructure of
complex autonomous systems and data centres comprises
CPUs and GPUs, which are able to provide high processing
speed at the expense of high power consumption. A potential
alternative platform that can offer both the flexibility and
performance that is required by modern CNNs at a lower
power envelope are the FPGAs. In the space of multi-CNN

systems, FPGAs offer unique optimisation opportunities due
to the possibility of fine-grained allocation of resources, which
is not offered by other platforms. However, until now, CNN
implementations, including FPGA-based accelerators [6]–[8],
are typically designed and optimised for scenarios where a
single model is running for an extensive period of time, while
the multiple CNNs setting has remained unexplored.

In this paper, we propose f-CNNx, an automated frame-
work that maps multiple CNNs on a target FPGA, by taking
into account the application-level required performance for
each model and the available hardware resources, in order to
generate an optimised multi-CNN architecture. The proposed
framework exploits the structure of CNN workloads and the
fine-grained control over resource allocation of FPGAs to yield
latency-optimised designs that overcome the limitations of
other parallel platforms targeting multiple CNNs. This paper
makes the following key contributions:
• A novel architecture for the parallel execution of

multiple CNNs on a single FPGA. The proposed
architecture is parametrised to allow the fine-grained
allocation of resources among CNNs and the deter-
ministic scheduling of external memory transfers to
minimise memory contention. This parametrisation
enables us to explore the design space of a wide range
of resource and bandwidth allocations.

• A novel design space exploration algorithm for ef-
ficiently traversing the large design space. The pro-
posed algorithm co-optimises the mapping of multi-
ple CNNs on the target FPGA and incorporates the
application-level importance of each model by means
of multiobjective cost functions in order to guide the
design space exploration to the optimum design points.
Moreover, a scheduling algorithm is proposed for the
optimised sharing of the external memory bandwidth.

• The f-CNNx automated toolflow for mapping multiple
CNNs on a particular FPGA-based platform, taking as
input a target set of CNNs in a high-level description,
performing fast design space exploration and generat-
ing a synthesisable Vivado HLS hardware design.

To the best of our knowledge, this work addresses for the first
time in the literature the mapping of multiple CNNs.

II. MULTIPLE CNNS ON RECONFIGURABLE LOGIC

A. Background on Multi-CNN Systems
Multi-CNN systems employ a number of models, with each

one trained for a different task. In the embedded space, drones
and self-driving cars run a variety of concurrent tasks, such
as navigation and obstacle avoidance [9]. In the cloud, ser-
vices are increasingly heterogeneous, with diverse workloads
executed concurrently for a large number of users [5]. Nev-
ertheless, mapping multiple CNNs on a computing platform
poses a challenge. With each model targeting a different task,
the performance constraints, such as required throughput and



latency, vary accordingly. Moreover, in resource-constrained
setups, multiple CNNs compete for the same pool of com-
putational and memory resources. As a result, the mapping
of multiple CNNs is a high-dimensional design problem that
encompasses both the performance needs of each model and
the resource constraints of the target platform.

B. Opportunities and Challenges in Mapping Multiple CNNs
CNNs comprise a sequence of layers, organised as a feature

extractor and a classifier stage. With the feature extractor
dominating the computational cost and fully-connected layers
limited in recent state-of-the-art models [10]–[12], this work
focuses on the feature extractor. In the context of multiple
CNNs, their characteristic structure presents opportunities for
performance optimisation. The dataflow of a CNN consists of
a feed-forward topology which can be modelled as a directed
acyclic graph with one node per layer. Under this model,
the dependencies between nodes and the workload of each
node, including the ops/input, storage and memory bandwidth
for weights and feature maps, are known a priori based on
each layer’s type and configuration. This prior knowledge of
compute and memory requirements enables 1) optimising at
compile time the on-chip resource allocation between multiple
CNNs and 2) generating an optimised static schedule for
sharing the bandwidth to sustain high hardware utilisation.

To exploit effectively these CNN-specific opportunities, a
fine-grained control over the customisation of the hardware is
required. Fine-grained parametrisation would allow tailoring
the allocation of on-chip resources to the potentially different
performance needs of the CNNs. At the same time, control
over the shared off-chip memory bandwidth would enable
deriving a schedule that sustains a high utilisation of the
architecture. Nevertheless, such a fine granularity leads to a
large number of design parameters even for a single CNN. By
scaling the problem to multiple models, the space of possible
designs becomes combinatorially large. Thus, the complexity
of mapping multiple CNNs on FPGAs necessitates a principled
methodology in order to generate optimised designs.

III. PROPOSED FRAMEWORK

A high-level description of f-CNNx’s flow is as follows.
The deep learning specialist provides the set of CNNs in Caffe1

format, together with a target performance for each model, and
the resources of the target FPGA platform. The Caffe descrip-
tions are translated to a dataflow representation with one node
per layer and passed to the design space exploration (DSE).
The DSE employs a Synchronous Dataflow [13] model of the
multi-CNN hardware architecture and a memory scheduling
policy to traverse the design space and optimise a multiob-
jective criterion that captures the user-specified performance
for each CNN. After the highest performing design point has
been selected, f-CNNx generates synthesisable Vivado HLS
code, which is compiled by the vendor’s toolchain.

A. Architecture

Fig. 1 shows the proposed multi-CNN architecture con-
sisting of two components: a number of heterogeneous CNN
engines and a multi-CNN hardware scheduler (MCNN-HS).
Instead of scheduling the target set of CNNs sequentially over
a fixed accelerator, the strategy of our framework is to generate
one dedicated engine per CNN, customised to its workload and

1http://caffe.berkeleyvision.org/
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Fig. 1: Parallel architecture for multiple CNNs.

performance needs, allowing the concurrent execution of all
models in an efficient way. The MCNN-HS module allocates the
off-chip memory bandwidth to the CNN engines, with a static
schedule as determined during the design space exploration.
The scheduling of off-chip memory transactions and the design
of MCNN-HS are detailed in Sec. III-C and III-D respectively.

CNN Engine. The hardware structure for each CNN engine
can be either a core that processes each layer sequentially in
a tiled manner (e.g. a matrix multiplication unit or a systolic
array) or a streaming architecture. In the first case, the engines
would have a fixed hardware template with customisable
tile sizes. In the latter case, a streaming design would be
parametrised with respect to the instantiated stages, their inter-
connections and the resource allocation among them. In this
work, the streaming paradigm is adopted, to obtain a finer grain
of control over the structure of each individual CNN engine.
Each engine consists of a coarse pipeline of heterogeneous
hardware stages, with each stage parametrised with respect to
its parallelism-resource trade-off. The pipeline for each CNN
can have a different structure, with a customisable sequence
of stages based on the topology and the computational needs
of the corresponding CNN (Fig. 1). Overall, the CNN engines
operate under a data-driven scheme so that each stage com-
putes whenever data arrive at its input.

The hardware stages are composed of modules for the con-
volutional, pooling and nonlinear layers. In the convolutional
layer, we exploit the parallelism with respect to its outputs by
tunably unrolling and instantiating one convolution processing
element (C-PE) per output feature map, with the input feature
maps processed in a pipelined manner. The output feature maps
are parametrised to be folded, as shown in Fig. 1, so that C-PEs
can be time-shared within a layer. Moreover, the dot-product
circuit inside each C-PE can be tunably scaled (Fig. 1), from
a single multiply-accumulate operator up to a fully parallel
multiplier array with an adder tree. Pooling and nonlinear
stages also have a tunable number of PEs, while operator-level
folding can be applied on max and average units of pooling
PEs. Under this parametrisation, each hardware stage has a
tunable number of PEs, NPE ∈ [1, Nout], where Nout is the
maximum number of output feature maps it has to process,
and a tunable number of operators, Nop ∈ [1,K2], where K
is the filter or pooling size depending on the type of layer,
and both can be optimised as dictated by the workload and
the performance requirements of the particular CNN.

With modern CNNs requiring an excessive amount of
memory for their trained weights even for a single layer [10],
we allow for the further folding of convolutional layers with



respect to their inputs. Layers that exceed the on-chip storage
of the target FPGA are tunably folded with respect to their
input feature maps and the associated weights with a factor
of fin ∈ [1, Nin] which determines the tile size, where Nin
is the number of input feature maps. This approach enables
the on-chip compute and memory resources allocated for a
convolutional layer to be time-multiplexed and the on-chip
storage requirements to be accommodated by the target device.

CNN Partitioning and Subgraphs. The large depth and
amount of weights often prohibit the direct mapping of each
individual CNN to hardware. To sustain the utilisation of
the architecture, we partition each CNN into subgraphs. The
adopted partitioning scheme allows the partitioning along
1) the depth of the model and 2) the input feature maps of
each convolutional layer, and requires each subgraph to contain
at least one convolutional layer. With this formulation, the
structure of each CNN engine is derived so that its datapath
can execute all the subgraphs of the corresponding CNN. The
partition points and the datapath for each engine are selected
during the proposed design space exploration, described in
Sec. III-B. Given a set of partitioned CNNs, the compute
and memory requirements of each subgraph are known at
compile time, based on the subgraph’s layers. As a result,
the scheduling of the subgraphs on the corresponding engine
as well as the memory transactions of the overall multi-CNN
architecture can be statically optimised at compile time.
B. Design Space Exploration

Given a set of CNNs, the design space of possible map-
pings is formed by the free parameters of the architecture.
These include 1) the partition points of each CNN, 2) the
structure of each CNN engine, including the number and type
of hardware stages and the connections between stages, 3) the
compile-time configurable folding parameters 〈NPE, Nop, fin〉
of each stage, and 4) the external memory bandwidth schedule.
By defining such a large parameter space, our proposed frame-
work trades off the capability of very fine-grained customisa-
tion that enables exploring a wide range of optimisations, at
the cost of a combinatorial space of possible mappings. To
capture each design point analytically and navigate efficiently
the design space, we employ a Synchronous Dataflow (SDF)
model [13] which considers the configuration of each candidate
design to estimate performance, on-chip resource consumption
and external memory bandwidth requirements.

Performance Model. Using the methodology described
in [14], we develop an SDF model for the multi-CNN ar-
chitecture. We model each CNN engine as an SDF graph
GCE=(V,E), with each node v ∈ V representing a hardware
stage. The configuration of each stage in the CNN engine is
captured with a tuple of the form 〈NPE, Nop, fin, T 〉, with NPE,
Nop and fin as defined in Sec. III-A and T the type of module.
In this setting, each stage has a consumption rate of NPENop
elements/cycle and the CNN engine is equivalently represented
with a topology matrix Γ ∈ R|E|×|V | with Γ(e, v) holding the
processing rate of node v on arc e.

The workload of a CNN subgraph is captured with a
workload matrix W ∈ Z|E|×|V | with W (e, v) holding the
elements to be produced or consumed by node v on arc e.
A partitioned CNN with NW subgraphs is associated with a
workload tuple W =< W i | i ∈ [1, NW ] >, with one matrix
per subgraph. At each stage, the workload is finNoutK

2houtwout
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2houtwout elements for
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Fig. 2: Overview of f-CNNx’s DSE flow.
In the case of N CNNs, the multi-CNN architecture is repre-
sented as GmultiCE={G1

CE, ..., G
N
CE} with multi-CNN topology

and workload tuples Γ =< Γi ∈ R|Ei|×|Vi| | i ∈ [1, N ] > and
W =< W i,j ∈ Z|Ei|×|Vi| | i ∈ [1, N ], j ∈ [1, NWi ] >. The
initiation interval matrix for the j-th subgraph of the i-th CNN
is constructed as IIi,j=W i,j �Γi, and the execution time of
a single (j-th) subgraph and all subgraphs of the i-th CNN on
the i-th engine are given by Eq. (1) and (2) respectively:

ti,j(B,Γi,W i,j) =
1

clock rate
· (Di + IImax

i,j · (B − 1)) (1)

titotal(B,Γi,W i,:) =

NWi∑
j=1

ti,j(B,Γi,W i,j)+

NWi∑
j=1

ti,j,weights (2)

where IImax
i,j is the maximum element of IIi,j , B the batch

size, Di the pipeline depth of the i-th CNN engine and
ti,j,weights the time to load the weights of the j-th subgraph of
the i-th CNN. Moreover, the latency of the j-th subgraph on the
i-th engine is given by L(B=1,Γi,W i,j) = ti,j(1,Γi,W i,j).

Search Method. Fig. 2 shows the proposed DSE method.
First, by exploring the design space of each individual CNN
on the resource budget of the target FPGA, the design points
on the latency-resource Pareto front of each CNN are found,
without accounting for the shared bandwidth to the external
memory. Each individual design point corresponds to different
1) partitioning of the CNN, 2) structure of the pipeline and
3) folding factors for each hardware stage, and is characterised
by its performance, on-chip resource consumption and its
workload, including the computational and off-chip memory
bandwidth requirements of its subgraphs.

As a next step, f-CNNx performs an enumeration of all the
combinations of design points that belong to the Pareto fronts
of individual CNNs to obtain joint design points, denoted by
σ. The combinations that do not lie in the feasible space
of the target FPGA are discarded based on their aggregate
on-chip resource consumption as

∑N
i=1 rsc(σi) ≤ rscAvail.,

where σi denotes the hardware design for the i-th CNN, N
the number of CNNs and rsc(σi) the resource consumption
vector, including LUTs, Flip-Flops, DSPs and BRAMs. Next,
the scheduler module (Fig. 2) takes into account the sharing
of the bandwidth and traverses the feasible space to search
for the (joint design point, memory transfers schedule) pair
that optimises a user-defined objective function. After the
highest performing joint design point has been selected, the
corresponding multi-CNN architecture is implemented using
an automated code generation mechanism.
C. Scheduler

The scheduler is responsible for taking into account the
effect of the shared memory bandwidth and identifying the



highest performing design for the multi-CNN architecture
based on a user-defined objective function. This module takes
as input the joint design points of the Pareto front and predicts
the actual performance of each point after scheduling the mem-
ory transfers. In this respect, the quality of the memory access
schedule affects substantially the utilisation of the architecture,
especially in cases with high bandwidth contention.

To this end, we cast the time-sharing of the external
memory bandwidth as a cyclic scheduling problem [15]
due to the constant stream of new inputs to the CNNs.
Based on this formulation, a set of tasks, in this case CNN
inferences, have to be performed repeatedly. The solution of
the cyclic scheduling problem would yield a schedule for
all tasks in the presence of precedence and resource sharing
constraints. In our formulation, the precedence constraints are
the dependencies between the subgraphs of each CNN with
resource sharing focusing on the off-chip memory bandwidth.
Moreover, we require our solution to be periodic with a fixed
period, named cycle time, and hence allow each CNN to
repeat multiple times during one cycle time. Formally, we
pose the following cyclic scheduling problem.
Inputs:
• N : the number of CNNs,
• NWi

, i ∈ [1, N ]: the number of subgraphs of each
CNN,

• S = {si,j | i ∈ [1, N ], j ∈ [1, NWi
] }: the set of

subgraphs,
• L(s): the latency of each subgraph,
• b(s): the memory bandwidth usage for each subgraph,
• si,j < si,j+1, ... : the set of precedence constraints on

subgraphs,
• K: the cycle time (or schedule period),
• rep(i), i ∈ [1, N ]: the repetitions of each CNN

inference in a cycle time,
• Bmem: the available memory bandwidth.

By allowing multiple repetitions of each CNN within a cycle
time, the augmented set of subgraphs becomes:

Saug = {si,j | i ∈ [1, N ], j ∈ [1, rep(i)NWi
]}

Decision variables:
• st(s) ∈ [0,K), s ∈ Saug: start time of each subgraph.

In addition, we define the following constraints:

1) All subgraphs must be scheduled and the start time
of each subgraph must lie within the cycle time:

0 ≤ st(s) < K, s ∈ Saug

2) If subgraph si precedes sj , then start time of sj must
occur after the end time of si within the cycle time:

si < sj ⇒ st(si) + L(si) < st(sj)

3) The memory bandwidth utilisation of subgraphs that
are scheduled during the same slot must not exceed
the available bandwidth, to minimise contention.

Slow-down Scheduler. As described in Sec. II-B, due to
the structure of CNNs, the scheduling of memory transfers
offers an opportunity for optimisation. Although the on-chip
resources constitute a hard constraint which cannot be violated
by the aggregate consumption of the CNN engines, memory
bandwidth is a soft constraint and can be violated from a design

by requiring more bandwidth than is available. Nevertheless,
bandwidth violations lead to memory contention between
the CNN engines, and therefore, if allowed, the estimated
performance from the performance model would be different to
the actual measured performance, making the DSE irrelevant.
Additionally, if we impose bandwidth as a hard constraint and
schedule the subgraphs to ensure no violations, the bandwidth
will be underutilised, due to the conservative scheduling and
the discrete nature of the subgraphs. To alleviate this, we
introduce a control mechanism over the processing rate of each
CNN engine at any time instant, which is optimised to remove
memory violations while maximising bandwidth utilisation.

Classic scheduling algorithms, such as Integer Linear Pro-
gramming (ILP) and heuristic schedulers, treat each schedula-
ble unit in a faithful manner, without modifying its execution
time and bandwidth requirements. Due to this property, such
schedulers do not exhibit the flexibility and expressive power
that can exploit the per-cycle deterministic control offered by
FPGAs over memory transfers. To this end, we propose a rate-
controlling scheduler which controls the processing rate of
each CNN engine at any instant. We model this by introducing
an additional set of decision variables to our cyclic scheduling
problem, under the name slow-downs, defined as in Eq. (3).

sli,j ∈ (0, 1], i ∈ [1, N ], j ∈ [1, rep(i)NWi
] (3){

L′(si,j) = 1
sli,j
× L(si,j)

b′(si,j) = sli,j × b(si,j)
(4)

We interpret slow-downs as a control factor over the bandwidth
allocated to each CNN engine at each time instant. With the
pipelines of our architecture operating under a data-driven
paradigm, a slower input data rate would slow down the
processing speed of an engine and, at the same time, reduce the
bandwidth requirements imposed on the off-chip memory by a
particular subgraph (Eq. (4)). As a result, with this formulation,
a subgraph with bandwidth violations can be slowed down and
potentially be scheduled more efficiently to better reflect the
actual attainable performance upon deployment.

Fig. 3 illustrates the potential benefits of slow-downs in
the case of three CNNs. The bottom left image shows the
predicted performance if no slow-downs were introduced and
no bandwidth violations were allowed. In this scenario, the
aggregate required bandwidth of the three subgraphs exceeds
the available budget by 1.25× and the subgraphs cannot be
scheduled in parallel without causing contention, leading to
the schedule depicted on the bottom left of Fig. 3. By applying
slow-down factors of 0.8, 0.8 and 0.75 respectively, 80% of
the required bandwidth is supplied to the first two subgraphs
and 75% to the third and, in this way, the processing rate of
each CNN engine is decreased proportionally. This approach
decreases the aggregate required bandwidth to the feasible
1.96 GB/s, leading to a shorter schedule.

The extension of the multi-CNN cyclic scheduling problem
to include slow-downs expands further the number of design
parameters that we have to optimise, leading to a more
complex design space. To solve the scheduling problem, we
treat it as multiobjective optimisation (MOO) with an objective
function that assesses the quality of a joint design point after
scheduling. The objective function is user-defined and can be
selected to capture the application-level importance of each
CNN. Two characteristic objective functions are shown in
Eq. (5) and (6).
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Objective Function 1. FPSobj: Optimise the multi-CNN
mapping to achieve the target frame rate in frames per second
(fps) for each CNN, with equal importance across the CNNs.

min
{σi}1≤i≤N

N∑
i=1

(
fps(σi)− fpstarget

i

fpstarget
i

)2

(5)

s.t.
N∑
i=1

rsc(σi) ≤ rscAvail.

where fps(σi) is the fps of the σi design point of the i-th
CNN given the shared bandwidth constraints, fpstarget

i is set
to min(fpsuser

i , fpsmax
i ), i.e the minimum between the user-

defined target fps and the maximum attainable fps2 for the i-th
network on the target platform. The fps of each design point
σi is divided by the target fps to obtain a non-dimensional
objective function and place equal weight to all the CNNs.

Objective Function 2. MaxThrpt: Optimise the multi-CNN
mapping to achieve the maximum throughput in GOp/s for
each CNN that lies in the joint design space.

min
{σi}1≤i≤N

N∑
i=1

(
T (σi)− Tmax

i

Tmax
i

)2

(6)

s.t.
N∑
i=1

rsc(σi) ≤ rscAvail.

where T (σi) denotes the throughput of the σi design point of
the i-th CNN in GOp/s given the shared bandwidth constraints
and Tmax

i the maximum attainable throughput for the i-th CNN
on the target FPGA. The throughput of each σi is divided
by the maximum throughput to obtain a non-dimensional
objective function and place equal weight to all the CNNs.

The resource-constrained cyclic scheduling problem has
been proven to be NP-hard [16]. In our multiple CNN for-
mulation of Sec. III-C, which is used to obtain a schedule
for each multi-CNN design point, the size of the problem is
proportional to the number of subgraphs to be scheduled. For
small-sized problems, we model the problem as an integer
linear program (ILP) and employ an ILP solver to obtain the
optimal solution. The excessive runtime of ILP solvers sets a
limit on the scale of solvable problems and, therefore, in such
cases, a heuristic scheduler is required to obtain a solution.
To this end, we developed a heuristic scheduler that combines
Resource Constrained List Scheduling (RCLS) [17] with slow-
downs. With this approach, given a joint design point and a
set of slow-downs, the lowest latency schedule is obtained.

2fpsmax
i is the maximum attainable fps for the i-th network assuming the

whole device and off-chip memory bandwidth are available only to this CNN.

Algorithm 1: Memory-aware DSE for multiple CNNs
Input: Set of joint design points Σ in the feasible space

Objective function F (σ, sl), σ ∈ Σ
Off-chip memory bandwidth budget Bmem

Output: Joint design point σ∗ chosen for the architecture
Optimised slow-down factors sl∗ for σ∗

1 foreach joint design point σ ∈ Σ do
2 /* - - - slow-down initialisation proposals - - - */
3 schedinit ← RCLS(σ); // Without bandwidth constraints
4 viol(s)← Violations(σ, schedinit, Bmem), ∀s ∈ σ
5 sl0(s)← RemoveViolations(s, viol(s)), ∀s ∈ σ

6 /* - - - slow-down search - - - */
7 Apply a pattern search algorithm over the slow-downs to

to optimise for F :
8 [sl, F (σ, sl)]← PatternSearch(σ, sl0, Bmem, F )
9 if F improved then

10 σ∗ ← σ; sl∗ ← sl
11 end
12 end

Memory-aware DSE. To select the highest performing
schedule for each point, we developed an iterative, derivative-
free pattern search (PS) optimiser [18] that, given a joint
design point σ, initial slow-down vector sl0, memory band-
width budget Bmem and target objective function F , searches
over slow-downs. At each 2-step iteration, the optimiser first
explores neighbouring solutions of the slow-down vector sl in
a finite number of directions. If a solution that improves F
is found, the optimiser updates the slow-down values. Else,
a polling step is performed to search for candidate solutions
farther away from the current sl. The PS algorithm requires a
large number of direct evaluations of F , which are efficiently
performed by means of the slow-down scheduler and the SDF
performance model (Sec. III-B). In this manner, the highest
performing schedule in terms of sl is obtained for each σ.

Algorithm 1 presents the overall memory-aware DSE,
searching over both on-chip resource and external memory
bandwidth allocations. The DSE searches over different on-
chip resource allocations between CNN engines (line 1). For
each allocation, the highest performing schedule is found by
means of the PS optimiser (lines 7-8). Prior to the optimiser, a
greedy strategy is employed to generate slow-down proposals
(lines 3-5) that place sl0 in a region of the design space with no
violations, in order to facilitate the slow-down search. At the
end of the loop, the (architecture, schedule) pair that optimises
F is selected. Further details of the slow-down scheduler and
the PS optimiser are omitted due to space constraints.

To illustrate the impact of the proposed memory-aware
scheme, Fig. 4 depicts how the memory-aware design shifts
the candidate joint design points to regions with improved
objective function values for benchmark 7 of Table III. The
horizontal axis shows the average resource usage across LUTs,
FFs, DSPs and BRAMs on Zynq XC7Z045. The explored
joint design points appear in (blue, red, yellow) triplets. The
points of a triplet have the same on-chip resource allocation,
but different scheduling. Blue points correspond to the peak
performance if each CNN engine had access to the full
platform bandwidth. Red points show the case when each
engine attempts to access the external memory asynchronously.
In contrast to the contention-unaware red points, the memory-
aware design enables yellow points to tailor the memory access
policy to the target multiobjective criterion and match it to
the performance requirements of each CNN, and as a result
outperform red points.
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Fig. 4: Effect of the proposed DSE (Table III, benchmark 7).
D. Multi-CNN Hardware Scheduler

The selected schedule is mapped to hardware with a rate-
controlling mechanism and a multi-CNN hardware scheduler.

Rate-controlling Mechanism. To implement a (schedule,
slow-downs) pair, each CNN engine has to be supplied a spe-
cific fraction of the available bandwidth at each time instant.
To this end, we discretise time into slots of equal size. During
a slot, only a single CNN engine is allocated the available
bandwidth, with all engines served in a round-robin fashion.
By allowing the CNN engines to occupy several consecutive
slots, a tunable fraction of the bandwidth is provided to each
engine during each period of slots as given by Eq. (7).

B(si,j) =
slots(si,j)

# slotsTotal
Bmem, i ∈ [1, N ], j ∈ [1, NWi ] (7)

where B(si,j) is the average supplied bandwidth and
slots(si,j) is the number of consecutive slots assigned during
the execution of the j-th subgraph by the i-th CNN engine.
With this formulation, to comply with a selected (schedule,
slow-downs) pair, the supplied bandwidth B(si,j) has to be
equal to the required bandwidth b′(si,j) (Eq. (4)). Hence, the
values of slots(si,j) are found by solving Eq. (7) with B(si,j)
set equal to b′(si,j). Finally, the size of each slot in cycles is
equal to the selected burst length for the memory transfers and
is discussed in the following section.

Microarchitecture. Key enabler of the proposed design is
the MCNN-HS module that is responsible for interfacing the
CNN engines with the external memory. Fig. 5 shows the mi-
croarchitecture of MCNN-HS. The selected schedule is encoded
into a compile-time configuration of MCNN-HS by means of
the rate-controlling mechanism. The MCNN-HS communicates
with the external memory via two memory controllers and
hosts two staging buffers that mediate between the external
memory and the FIFOs of the CNN engines. The sizes of the
staging buffers are determined based on the largest on-chip
storage requirement among the target subgraphs. Moreover,
the FIFOs are employed to smooth out the time discretisation
of the external memory accesses, so that the CNN engines see
a continuous flow of data, instead of bursts, with their depth
configured based on the processing rate of each engine.

MCNN-HS comprises a configuration table and a control
unit (CU). The configuration table stores encoded information
for each subgraph about the amount of data to be transferred,
the allocated number of consecutive slots and the off-chip
memory addresses, with the contents of the table determined
at compile time by the rate-controlling mechanism. The CU
is responsible for orchestrating the multi-CNN schedule at run
time. A subgraphs register is used to keep track of the currently
active subgraph for each CNN and look up the appropriate
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Fig. 5: Microarchitecture of the multi-CNN hardware scheduler.

entries of the configuration table. While all the CNN engines
operate in parallel, off-chip memory access is supplied to each
engine in a round-robin manner by the CU. The burst lengths,
and hence the duration of a slot in cycles, for the memory
controllers are set to a fixed value across all transactions in
order to simplify their configuration and minimise memory
access inefficiencies3. Finally, if the wordlength is smaller that
the width of the memory port, multiple values are packed
together to increase bandwidth utilisation.

As an example of MCNN-HS’s operation, consider a setting
with three CNNs with one subgraph each, slots(s1,1)=1,
slots(s2,1)=2 and slots(s3,1)=4, 16384, 16384 and 32768
elements to be read, a burst length of 1024, 16-bit precision
and a shared 64-bit memory port. With 16-bit values packed
in groups of 4, the 64-bit port transfers 4 elements per cycle.
Given the burst length of 1024, subgraphs s1,1, s2,1 and
s3,1 are supplied 1024, 2048 and 4096 consecutive cycles
respectively with a transfer rate of 4 elements/cycle. Overall, in
a period of 7 slots, the subgraphs will receive 4096, 8192 and
16384 elements in a round-robin fashion. To receive all their
data, all slots have to execute 4, 2 and 2 times respectively. The
fraction of supplied bandwidth in this case would be 14.28%,
28.57% and 57.14% respectively.

TABLE I: Benchmarks
Model Name Layers Workload Task

LeNet-5 (Caffe version) [19] 4 0.0038 GOps Digit Recognition
CIFAR-10 [20] 9 0.0247 GOps Object Recognition
PilotNet [2] 10 0.0620 GOps Wheel Stirring
ZFNet [21] 10 2.2219 GOps Object Detection
SceneLabelCNN [22] 8 7.6528 GOps Scene Labelling
VGG16 [23] 31 30.7200 GOps Scene Recognition

IV. EVALUATION
A. Experimental Setup

In our experiments, we target the ZC706 board mounting
the Zynq XC7Z045 SoC, with a clock rate of 150 MHz. All
hardware designs were synthesised and placed-and-routed with
Xilinx’s Vivado Design Suite (v17.2) and run on the ZC706
board. The ARM CPU was used to measure the performance of
each design. For the evaluation, Q8.8 16-bit precision was used
which has been studied to give similar results to 32-bit floating-
point [6]. In each multi-CNN benchmark (Tables II and III),
the available bandwidth was controlled by using a different
number of memory ports and amount of word packing.

Table I lists our benchmark CNNs. LeNet-5 and CIFAR-10
have comparatively small workloads and are employed to
evaluate the RCLS against the optimal ILP scheduler. PilotNet,
ZFNet, SceneLabelCNN and VGG16 pose mapping challenges
such as the non-uniform filters of ZFNet, the large filters of
SceneLabelCNN and the computational intensity of VGG16.
Moreover, ZFNet and VGG16 are used for numerous object

3By investigating the impact of burst length on bandwidth utilisation
efficiency, a burst length of 1024 was selected for MCNN-HS, achieving higher
than 90% measured efficiency on ZC706.



TABLE III: Comparison of f-CNNx and contention-unaware FPGA accelerator (batch size = 1)

ID Benchmark Model Set Available
Bandwidth Baseline (GOp/s) f-CNNx (GOp/s) Speed-up

(geo. mean)
FPSobj
(% Gain)

1 3 CNNs ZFNet, SceneLabelCNN, VGG16 1.0 GB/s (15.43, 28.61, 16.40) (13.97, 60.14, 48.27) 77% 42%
2 3 CNNs ZFNet, SceneLabelCNN, VGG16 1.7 GB/s (17.03, 91.23, 26.15) (19.92, 85.71, 68.80) 42% 51%
3 3 CNNs ZFNet, SceneLabelCNN, VGG16 2.0 GB/s (22.58, 87.48, 39.01) (21.45, 92.30, 74.08) 24% 38%
4 3 CNNs ZFNet, SceneLabelCNN, VGG16 3.8 GB/s (22.70, 96.22, 48.76) (23.05, 99.21, 79.63) 19% 37%

5 4 CNNs ZFNet, PilotNet, SceneLabelCNN, VGG16 1.0 GB/s ( 8.12, 0.72, 33.58, 11.22) (10.39, 1.26, 47.71, 47.87) 91% 54%
6 4 CNNs ZFNet, PilotNet, SceneLabelCNN, VGG16 1.7 GB/s (13.51, 1.27, 58.14, 23.33) (21.18, 1.87, 72.91, 48.77) 57% 43%
7 4 CNNs ZFNet, PilotNet, SceneLabelCNN, VGG16 2.0 GB/s (16.00, 1.47, 68.11, 30.37) (20.00, 1.95, 68.86, 69.08) 40% 40%
8 4 CNNs ZFNet, PilotNet, SceneLabelCNN, VGG16 3.8 GB/s (15.46, 1.61, 85.14, 37.96) (16.28, 1.97, 93.43, 75.00) 29% 32%

TABLE II: Proposed vs. Optimal ILP Scheduler
ID Benchmark Model Set Subgraphs Available

Bandwidth
ILP

MaxThrpt/Runtime
RCLS

MaxThrpt/Runtime

1 2 CNNs LeNet-5, CIFAR-10 20 0.5 GB/s 0.395 / 5.8 min 0.395 / 3.6 s
2 2 CNNs LeNet-5, CIFAR-10 18 3.8 GB/s 0.254 / 5.9 min 0.254 / 3.6 s
3 3 CNNs LeNet-5, 2× CIFAR-10 44 1.5 GB/s 0.983 / 2h36 0.983 / 4.1 min
4 3 CNNs LeNet-5, 2× CIFAR-10 44 3.8 GB/s 0.946 / 2h30 0.946 / 2.5 min
5 4 CNNs LeNet-5, 3× CIFAR-10 548 1.5 GB/s - 1.875 / 1h
6 4 CNNs LeNet-5, 3× CIFAR-10 1454 3.8 GB/s - 1.829 / 1h

detectors [3] in multi-CNN applications, with VGG16’s pre-
trained model widely employed in new domains [4].

The rest of this section focuses on 1) the evaluation of the
proposed heuristic scheduler with respect to an optimal ILP
scheduler, 2) comparisons with a contention-unaware multi-
CNN FPGA design and 3) with highly optimised designs
targeting an embedded GPU across multi-CNN settings.

B. Evaluation of Proposed Scheduler
In this section, the quality of the proposed RCLS-based

scheduler is assessed. This is investigated by using the
MaxThrpt criterion (Eq. (6)) to generate multi-CNN hardware
designs using both the RCLS and the ILP schedulers and
measuring the real achieved value on the target FPGA board.
The comparisons are performed on small-scale problems in
order for the ILP solver to yield a solution in a tractable amount
of time, where the scale is defined as the number of subgraphs
to be scheduled. We employ the low-end LeNet-5 and CIFAR-
10 and compare across six settings by varying the number of
CNNs and the available bandwidth. Table II presents the mea-
sured results on ZC706. The selected multi-CNN designs were
implemented and run on the target platform and the measured
performances were used to yield the achieved MaxThrpt.
The results demonstrate that both schedulers achieve identical
values with respect to the objective function, with the RCLS
scheduler generating the schedule in much shorter runtime.
When scaling to four CNNs (rows 5 and 6), the problem size
increases substantially and the excessive runtime of the ILP
solver prohibits us from obtaining an optimal schedule, which
verifies the necessity of the heuristic scheduler.
C. Comparison with Contention-unaware FPGA Architecture

As this is the first work that addresses the problem of
mapping multiple CNNs on an FPGA, we cosidered as a
baseline the application of the proposed methodology with-
out scheduling optimisation, to yield a contention-unaware
implementation. In this respect, we compare the achieved
performance of a) the contention-unaware design and b) the
f-CNNx design generated using the complete methodology, on
a number of multi-CNN benchmarks. The contention-unaware
design comprises the highest performing f-CNNx architecture
with the CNN engines configured so that their aggregate on-
chip resource consumption is feasible on the target FPGA, but
without exposing the sharing of the bandwidth to the DSE. In
this implementation, each engine is connected to a dedicated
DMA engine, with all DMA engines running asynchronously.
In the DSE of f-CNNx, the FPSobj objective function (Eq. (5))

is employed, with a target frame rate of 25 fps for ZFNet,
PilotNet and SceneLabelCNN, and 4 fps for VGG164.

Table III shows the actual performance for each design
as measured on the ZC706 board under varying bandwidth
budget. In bandwidth restricted cases (rows 1-3,5-7), f-CNNx

outperforms the baseline by up to 77% and 91% in average
throughput across the CNNs of each benchmark and with over
50% improvement on the achieved FPSobj values. As more
bandwidth becomes available (rows 4, 8), the two accelerators
become more compute-bound and the difference in perfor-
mance tends to decrease. Due to the asynchronous operation of
the contention-unaware accelerator’s DMA engines, different
memory transactions affect each other and degrade the overall
bandwidth utilisation efficiency, which in turn causes the CNN
engines to remain underutilised. On the other hand, the f-CNNx

alleviates the effect of randomised bandwidth contention be-
tween CNN engines and sustains a high utilisation of the
hardware, by using its memory-aware scheme that couples
the optimisation of the compute resources and the external
memory bandwidth, and outperforms the contention-unaware
in cases where bandwidth is the critical factor.

D. Comparison with Embedded GPU
With a large number of CNNs being deployed for inference

in multi-tasking embedded systems, our evaluation focuses on
the embedded space. In power-constrained applications, the
primary metrics of interest comprise 1) the absolute power
consumption and 2) the performance efficiency in terms of
performance-per-Watt. In this respect, we investigate the per-
formance efficiency of f-CNNx on Zynq XC7Z045 in relation
to the widely used NVIDIA Tegra X1 (TX1). To comply with
the stringent latency needs of modern systems, both the FPGA
and GPU designs use a batch size of 1.

For the performance evaluation on TX1, we use NVIDIA
TensorRT as supplied by the JetPack 3.1 package. TensorRT is
run with the cuDNN library and 16-bit half-precision floating-
point arithmetic (FP16) which enables the highly optimised
execution of layers. In each benchmark, the TensorRT imple-
mentations of the target CNNs are scheduled over the GPU
in a rotational and periodic manner. Across all the platforms,
each multi-CNN benchmark is run 100 times to obtain the
average performance. Furthermore, power measurements for
the GPU and the FPGA are obtained via a power monitor on
the corresponding board. In all cases, we subtract the average
idle power5 from the measurement to obtain the power due
to benchmark execution which includes the off-chip memory.
The idle power of the ZC706 platform is measured at the board
level with no design programmed in the FPGA fabric, so that
the clock tree power and the power leakage of the chip are also
included in the run-time power due to benchmark execution.

4By using fpstarget
i =min(fpsuser

i , fpsmax
i ) as per Eq. (5), VGG16 achieves

fpsmax
i of around 4 fps with the proposed architecture on ZC706.

5Idle Power: Jetson TX1 (5W), ZC706 (7W).



TABLE IV: Comparison of f-CNNx (ZC706) and GPU (NVIDIA TX1) on multi-CNN benchmarks (batch size = 1)

Benchmark Model Set f-CNNx

(GOp/s)
f-CNNx

(GOp/s/W)
TX1
(GOp/s)

TX1
(GOp/s/W)

TX1 (5W)
(GOp/s)

TX1 (5W)
(GOp/s/W)

Gain
(GOp/s)

Gain
(GOp/s/W)

Gain (5W)
(GOp/s)

Gain (5W)
(GOp/s/W)

ZFNet 23.05 (10.37 fps) 5.76 (2.59 fps/W) 29.51 1.84 3.72 0.74 0.78× 3.13× 6.19× 7.74×
3 CNNs SceneLabelCNN 99.21 (12.96 fps) 24.80 (3.24 fps/W) 101.64 6.35 12.81 2.56 0.97× 3.90× 7.74× 9.68×

VGG16 79.63 ( 2.59 fps) 19.90 (0.65 fps/W) 408.03 25.50 51.43 10.28 0.19× 0.78× 1.55× 1.93×

Average (geo. mean) - - - - - - 0.53× 2.12× 4.20× 5.25×

ZFNet 16.28 ( 7.32 fps) 4.07 (1.83 fps/W) 29.37 1.83 3.70 0.74 0.55× 2.21× 4.40× 5.50×
PilotNet 1.97 (31.77 fps) 0.49 (7.94 fps/W) 0.82 0.05 0.10 0.02 2.40× 9.61× 19.09× 23.86×

4 CNNs SceneLabelCNN 93.43 (12.21 fps) 23.36 (3.05 fps/W) 101.17 6.32 12.73 2.54 0.92× 3.69× 7.33× 9.17×
VGG16 75.00 ( 2.44 fps) 18.75 (0.61 fps/W) 406.15 25.38 51.12 10.22 0.18× 0.74× 1.46× 1.83×

Average (geo. mean) - - - - - 0.69× 2.76× 5.48× 6.85×
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Fig. 6: Resource utilisation breakdown of the f-CNNx designs
for (6a) Table IV:3 CNNs and (6b) Table IV:4 CNNs.

Table IV shows the measured performance efficiency of
TX1 and ZC706. For all benchmarks, the target objective
function was FPSobj (Eq. (5)) with fpstarget

i set to 25 fps for
ZFNet, PilotNet and SceneLabelCNN and 4 fps for VGG16.
TX1 mounts a 256-core GPU with hardware support for FP16
arithmetic and with a configurable range of frequencies up
to 998 MHz at a peak power consumption of around 15W.
To investigate the performance of each platform under the
same power constraints, we set a power budget of 5W as is
commonly present in autonomous vehicles, and configure the
GPU with a 76.8 MHz clock rate in order not to exceed the 5W
dynamic power budget. In the case of three CNNs, f-CNNx

achieves a throughput improvement of up to 7.74× with an
average of 4.2× (geo. mean) across the three models. In the
case of four CNNs, f-CNNx demonstrates a throughput gain of
up to 19.09× with an average of 5.48× (geo. mean) across the
four models. Fig. 6 shows the post place-and-route resource
utilisation breakdown between the CNN engines. f-CNNx

allocates effectively a higher amount of FPGA resources for
the more computationally heavy SceneLabelCNN and VGG16
to balance the achieved fps-per-CNN as dictated by FPSobj.
The MCNN-HS module adds a minimal resource overhead of
less than 5% in LUTs and FFs, with the BRAMs of the staging
buffers included and equally spread over the CNNs in Fig. 6.

To evaluate performance efficiency, we configure the GPU
with the peak frequency of 998 MHz. When running the three
CNNs, f-CNNx overpasses the performance-per-Watt of TX1
by up to 3.9× with an average of 2.12× (geo. mean). In the
four-CNN benchmark, f-CNNx yields up to 9.61× gain over
TX1 in performance efficiency with an average of 2.76× (geo.
mean) across the four CNNs. Despite the fact that the GPU
executes CNN layers very efficiently, existing highly opti-
mised implementations are limited to a sequential scheduling
of layers and CNNs. In contrast, f-CNNx exploits both the
pipelined parallelism between layers within a CNN engine and
the parallel execution of CNNs across multiple engines, and
generates designs tailored to the target application.

V. RELATED WORK

Since the original publication of this work, there have
been several proposed hardware designs that specifically tar-
get multi-tenant multi-CNN applications. Closer to f-CNNx,
Kwon et al. [24] introduce heterogeneous dataflow accelerators
(HDAs), which employ multiple sub-accelerators, each sup-
porting a different dataflow. Based on their workload character-
istics, each CNN and each CNN layer can be scheduled at run
time to the highest performing sub-accelerator. Planaria [25]
proposes the dynamic construction of compute engines using
multiple distinct systolic arrays. As such, the compute engine
of the accelerator can be configured at run time and each
DNN layer can be scheduled to the most suitable constructed
compute engine at any time instance. AI-MT [26] schedules to-
gether compute- and memory-bound layers of different CNNs
in order to fully utilise both the computational resources and
the available off-chip memory bandwidth. Towards a CNN-
hardware co-design approach, Yang et al. [27] propose a
methodology to co-design multiple CNNs targeting different
tasks, together with the underlying multi-CNN accelerator.
Finally, Ribes et al. [28] propose a multi-LSTM accelerator.

Different to these works, f-CNNx adopts a more
customisation-driven strategy by instantiating multiple spa-
tially distinct compute engines, each one tailored at a fine
granularity for the particular CNN. Furthermore, f-CNNx

co-optimises the design of these compute engines with the
scheduling of the off-chip memory transfers to achieve high
resource utilisation at run time. Overall, this approach allows
us to reach maximum performance and energy efficiency, at
the cost of limited programmability upon deployment.

VI. CONCLUSION

This paper presents f-CNNx, a framework for map-
ping multiple CNNs on FPGAs. By introducing a highly-
customisable multi-CNN architecture together with an exter-
nal memory access policy, the proposed toolflow tailors the
allocation of both compute resources and external memory
bandwidth to the performance requirements of the target set of
CNNs. Evaluation shows that f-CNNx achieves performance
gains of up to 50% over mappings that allow memory con-
tention and delivers up to 6.8× higher performance-per-Watt
over highly optimised embedded GPU designs. To the best of
our knowledge, this work introduces for the first time in the
literature the mapping of multiple CNNs. Future work will
explore the mapping of multiple CNN workloads in cloud
environments.
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